411 research outputs found

    Quantum Mechanics as a Simple Generalization of Classical Mechanics

    Get PDF
    A motivation is given for expressing classical mechanics in terms of diagonal projection matrices and diagonal density matrices. Then quantum mechanics is seen to be a simple generalization in which one replaces the diagonal real matrices with suitable Hermitian matrices.Comment: 9 pages, LaTe

    Freak observers and the measure of the multiverse

    Get PDF
    I suggest that the factor pjp_j in the pocket-based measure of the multiverse, Pj=pjfjP_j=p_j f_j, should be interpreted as accounting for equilibrium de Sitter vacuum fluctuations, while the selection factor fjf_j accounts for the number of observers that were formed due to non-equilibrium processes resulting from such fluctuations. I show that this formulation does not suffer from the problem of freak observers (also known as Boltzmann brains).Comment: 6 pages, no figures; references adde

    Agnesi Weighting for the Measure Problem of Cosmology

    Full text link
    The measure problem of cosmology is how to assign normalized probabilities to observations in a universe so large that it may have many observations occurring at many different spacetime locations. I have previously shown how the Boltzmann brain problem (that observations arising from thermal or quantum fluctuations may dominate over ordinary observations if the universe expands sufficiently and/or lasts long enough) may be ameliorated by volume averaging, but that still leaves problems if the universe lasts too long. Here a solution is proposed for that residual problem by a simple weighting factor 1/(1+t^2) to make the time integral convergent. The resulting Agnesi measure appears to avoid problems other measures may have with vacua of zero or negative cosmological constant.Comment: 26 pages, LaTeX; discussion is added of how Agnesi weighting appears better than other recent measure

    Noncomminuted lateral end clavicle fractures associated with coracoclavicular ligament disruption: technical considerations for optimal anatomic fixation and stability

    Full text link
    Distal clavicle fractures associated with coracoclavicular ligament disruption are potentially unstable and necessitate surgical treatment. Current fixation techniques are nonanatomic and do not address relevant aspects of the pathoanatomy. We have developed a technique that uses a unique combination of implants; this permits minimally invasive fixation and stable reduction with a lateral fragment size as small as 5 mm. The surgical technique consists of (1) neutralization of muscular forces on the proximal fragment using a minimally invasive ligament repair device (TightRope™, Arthrex, FL, USA) and (2) internal fixation using a contour-matched locking plate (2.4 mm LCP(®) Distal radius plates, Synthes, USA). Technical tips to optimize this new procedure are discussed. The technique can be extended to an “arthroscopic-assisted” method involving arthroscopic coracoclavicular fixation followed by a mini-open plate fixation of the clavicular fragments

    The Height of a Giraffe

    Full text link
    A minor modification of the arguments of Press and Lightman leads to an estimate of the height of the tallest running, breathing organism on a habitable planet as the Bohr radius multiplied by the three-tenths power of the ratio of the electrical to gravitational forces between two protons (rather than the one-quarter power that Press got for the largest animal that would not break in falling over, after making an assumption of unreasonable brittleness). My new estimate gives a height of about 3.6 meters rather than Press's original estimate of about 2.6 cm. It also implies that the number of atoms in the tallest runner is very roughly of the order of the nine-tenths power of the ratio of the electrical to gravitational forces between two protons, which is about 3 x 10^32.Comment: 12 pages, LaTe

    Black Hole Configurations with Total Entropy Less than A/4

    Get PDF
    If one surrounds a black hole with a perfectly reflecting shell and adiabatically squeezes the shell inward, one can increase the black hole area A to exceed four times the total entropy S, which stays fixed during the process. A can be made to exceed 4S by a factor of order unity before the one enters the Planck regime where the semiclassical approximation breaks down. One interpretation is that the black hole entropy resides in its thermal atmosphere, and the shell restricts the atmosphere so that its entropy is less than A/4.Comment: 31 pages, LaTe

    The Born Rule Dies

    Full text link
    The Born rule may be stated mathematically as the rule that probabilities in quantum theory are expectation values of a complete orthogonal set of projection operators. This rule works for single laboratory settings in which the observer can distinguish all the different possible outcomes corresponding to the projection operators. However, theories of inflation suggest that the universe may be so large that any laboratory, no matter how precisely it is defined by its internal state, may exist in a large number of very distantly separated copies throughout the vast universe. In this case, no observer within the universe can distinguish all possible outcomes for all copies of the laboratory. Then normalized probabilities for the local outcomes that can be locally distinguished cannot be given by the expectation values of any projection operators. Thus the Born rule dies and must be replaced by another rule for observational probabilities in cosmology. The freedom of what this new rule is to be is the measure problem in cosmology. A particular volume-averaged form is proposed.Comment: LaTeX, 16 pages, typos in Eqs. (4.3) and (6.2) correcte

    Bound states and the Bekenstein bound

    Full text link
    We explore the validity of the generalized Bekenstein bound, S <= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width a. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.Comment: 35 page

    Semi-classical limit and minimum decoherence in the Conditional Probability Interpretation of Quantum Mechanics

    Full text link
    The Conditional Probability Interpretation of Quantum Mechanics replaces the abstract notion of time used in standard Quantum Mechanics by the time that can be read off from a physical clock. The use of physical clocks leads to apparent non-unitary and decoherence. Here we show that a close approximation to standard Quantum Mechanics can be recovered from conditional Quantum Mechanics for semi-classical clocks, and we use these clocks to compute the minimum decoherence predicted by the Conditional Probability Interpretation.Comment: 8 pages, references adde

    Hawking Radiation as Tunneling through the Quantum Horizon

    Get PDF
    Planck-scale corrections to the black-hole radiation spectrum in the Parikh-Wilczek tunneling framework are calculated. The corrective terms arise from modifications in the expression of the surface gravity in terms of the mass-energy of the black hole-emitted particle system. The form of the new spectrum is discussed together with the possible consequences for the fate of black holes in the late stages of evaporation.Comment: 13 pages; the contents of this paper overlap somewhat with the earlier submissions hep-th/0504188 and gr-qc/0505015; (v2) references added and various cosmetic (but no physics) changes, to appear in JHE
    • …
    corecore